

WTForms-Django documentation

Contents:

	WTForms-Django
	Templatetags

	Model forms

	ORM-backed fields

Indices and tables

	Index

	Module Index

	Search Page

WTForms-Django

This extension provides templatetags to make it easier to work with Django
templates and WTForms’ html attribute rendering. It also provides a generator
for automatically creating forms based on Django ORM models.

Templatetags

Django templates does not allow arbitrarily calling functions with parameters,
making it impossible to use the html attribute rendering feature of WTForms. To
alleviate this, we provide a templatetag.

Adding wtforms_django to your INSTALLED_APPS will make the wtforms
template library available to your application. With this you can pass extra
attributes to form fields similar to the usage in jinja:

{% load wtforms %}

{% form_field form.username class="big_text" onclick="do_something()" %}

Note By default, using the {{ form.field }} syntax in django models will
be auto-escaped. To avoid this happening, use Django’s {% autoescape off %}
block tag or use WTForms’ form_field template tag.

Model forms

	
wtforms_django.orm.model_form(model, base_class=Form, only=None, exclude=None, field_args=None, converter=None)

	Create a wtforms Form for a given Django model class:

from wtforms_django.orm import model_form
from myproject.myapp.models import User
UserForm = model_form(User)

	Parameters

	
	model – A Django ORM model class

	base_class – Base form class to extend from. Must be a wtforms.Form subclass.

	only – An optional iterable with the property names that should be included in
the form. Only these properties will have fields.

	exclude – An optional iterable with the property names that should be excluded
from the form. All other properties will have fields.

	field_args – An optional dictionary of field names mapping to keyword arguments used
to construct each field object.

	converter – A converter to generate the fields based on the model properties. If
not set, ModelConverter is used.

model_form() attempts to glean as much metadata as possible from
inspecting the model’s fields, and will even attempt to guess at what
validation might be wanted based on the field type. For example, converting
an EmailField will result in a StringField with
the Email validator on it. if the blank
property is set on a model field, the resulting form field will have the
Optional validator set.

Just like any other Form, forms created by model_form can be extended via
inheritance:

UserFormBase = model_form(User)

class UserForm(UserFormBase):
 new_pass = PasswordField('', [validators.optional(), validators.equal_to('confirm_pass')])
 confirm_pass = PasswordField()

When combined with form iteration,
model_form is a handy way to generate dynamic CRUD forms which update with
added fields to the model. One must be careful though, as it’s possible the
generated form fields won’t be as strict with validation as a hand-written
form might be.

ORM-backed fields

While linking data to most fields is fairly easy, making drop-down select lists
using django ORM data can be quite repetitive. To this end, we have added some
helpful tools to use the django ORM along with wtforms.

	
class wtforms_django.fields.QuerySetSelectField(default field args, queryset=None, get_label=None, allow_blank=False, blank_text=u'')

	Given a QuerySet either at initialization or inside a view, will display a
select drop-down field of choices. The data property actually will
store/keep an ORM model instance, not the ID. Submitting a choice which is
not in the queryset will result in a validation error.

Specify get_label to customize the label associated with each option. If
a string, this is the name of an attribute on the model object to use as
the label text. If a one-argument callable, this callable will be passed
model instance and expected to return the label text. Otherwise, the model
object’s __str__ or __unicode__ will be used.

If allow_blank is set to True, then a blank choice will be added to the
top of the list. Selecting this choice will result in the data property
being None. The label for the blank choice can be set by specifying the
blank_text parameter.

class ArticleEdit(Form):
 title = StringField()
 column = QuerySetSelectField(get_label='title', allow_blank=True)
 category = QuerySetSelectField(queryset=Category.objects.all())

def edit_article(request, id):
 article = Article.objects.get(pk=id)
 form = ArticleEdit(obj=article)
 form.column.queryset = Column.objects.filter(author=request.user)

As shown in the above example, the queryset can be set dynamically in the
view if needed instead of at form construction time, allowing the select
field to consist of choices only relevant to the user.

	
class wtforms_django.fields.ModelSelectField(default field args, model=None, get_label='', allow_blank=False, blank_text=u'')

	Like a QuerySetSelectField, except takes a model class instead of a
queryset and lists everything in it.

	
class wtforms_django.fields.DateTimeField(*args, **kwargs)

	Adds support for Django’s timezone utilities.
Requires Django >= 1.4

 Python Module Index

 w

 		 	

 		
 w	

 	[image: -]
 	
 wtforms_django	

 	
 	
 wtforms_django.fields	

 	
 	
 wtforms_django.orm	

 	
 	
 wtforms_django.templatetags.wtforms	

Index

 D
 | M
 | Q
 | W

D

 	
 	DateTimeField (class in wtforms_django.fields)

M

 	
 	model_form() (in module wtforms_django.orm)

 	
 	ModelSelectField (class in wtforms_django.fields)

Q

 	
 	QuerySetSelectField (class in wtforms_django.fields)

W

 	
 	wtforms_django (module)

 	wtforms_django.fields (module)

 	
 	wtforms_django.orm (module)

 	wtforms_django.templatetags.wtforms (module)

 nav.xhtml

 Table of Contents

 		
 WTForms-Django documentation

 		
 WTForms-Django

 		
 Templatetags

 		
 Model forms

 		
 ORM-backed fields

_static/file.png

_static/ajax-loader.gif

_static/minus.png

_static/down.png

_static/up-pressed.png

_static/up.png

_static/plus.png

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down-pressed.png

